Submit Manuscript  

Article Details


Current Understanding of Central Nervous System Drainage Systems: Implications in the Context of Neurodegenerative Diseases

[ Vol. 18 , Issue. 11 ]

Author(s):

Vladimir N. Nikolenko , Marine V. Oganesyan, Angela D. Vovkogon, Arina T. Nikitina, Ekaterina A. Sozonova, Valentina A. Kudryashova, Negoria A. Rizaeva, Ricardo Cabezas, Marco Avila-Rodriguez, Margarita E. Neganova, Liudmila M. Mikhaleva, Sergey O. Bachurin, Siva G. Somasundaram, Cecil E. Kirkland, Vadim V. Tarasov and Gjumrakch Aliev*   Pages 1054 - 1063 ( 10 )

Abstract:


Until recently, it was thought that there were no lymphatic vessels in the central nervous system (CNS). Therefore, all metabolic processes were assumed to take place only in the circulation of the cerebrospinal fluid (CSF) and through the blood-brain barrier’s (BBB), which regulate ion transport and ensure the functioning of the CNS. However, recent findings yield a new perspective: There is an exchange of CSF with interstitial fluid (ISF), which is drained to the paravenous space and reaches lymphatic nodes at the end. This circulation is known as the glymphatic system. The glymphatic system is an extensive network of meningeal lymphatic vessels (MLV) in the basal area of the skull that provides another path for waste products from CNS to reach the bloodstream. MLV develop postnatally, initially appearing around the foramina in the basal part of the skull and the spinal cord, thereafter sprouting along the skull’s blood vessels and spinal nerves in various areas of the meninges. VEGF-C protein (vascular endothelial growth factor), expressed mainly by vascular smooth cells, plays an important role in the development of the MLV. The regenerative potential and plasticity of MLV and the novel discoveries related to CNS drainage offer potential for the treatment of neurodegenerative diseases such as dementia, hydrocephalus, stroke, multiple sclerosis, and Alzheimer disease (AD). Herein, we present an overview of the structure and function of the glymphatic system and MLV, and their potential involvement in the pathology and progression of neurodegenerative diseases.

Keywords:

Glymphatic system, meningeal lymphatic vessels (MLV), cerebrospinal fluid (CSF), blood-brain barrier (BBB), functional anatomy, interstitial fluid of the brain, aquaporin-4, clinical perspective, neurodegenerative disorders.

Affiliation:

Department of Human Anatomy, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Department of Human Anatomy, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Department of Human Anatomy, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Department of Human Anatomy, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Department of Human Anatomy, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Department of Human Anatomy, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Department of Human Anatomy, Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Department of Biochemistry and Nutrition, Science Faculty, Pontificia Universidad Javeriana, Bogota, Health Sciences Faculty, Clinic Sciences Department, University of Tolima, 730006 Ibague, Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Department of Biological Sciences, Salem University, Salem, WV, Department of Biological Sciences, Salem University, Salem, WV, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991

Graphical Abstract:



Read Full-Text article